

QL40-SGR Data Sheet

The **QL40-SGR** probe utilizes full gamma ray spectra to measure nuclide concentrations, offering precise gamma radiation counts.

The data is displayed as a spectrum with peaks and troughs, which can be processed in real-time with WellCad logging software.

It accurately measures gamma counts within lithological units, particularly useful in cross borehole geometries. Ideal for environmental, geological, and mining studies, the SGR helps assess structural weaknesses, mineral content, and clay presence in subsurface lithologies.

The probe is compatible with 4 to 7 coax cables and operates in various environments.

	Total Gamma	(Depth		к			StabSpectrum	
0	API	1000	1m:100m	0	Bq/kg U	2500	0	cps keV Spectrum	35.3487 2990
				0	Bq/kg Th	2500	0 0	cps channels	34.7464 150
				0	Bq/kg	2500			
				-		-			
ş				2					
X			10	1					
1	>						-	all all a second and a second as a second	

Features

- Adaptable probe suitable for a variety of applications and environments.
- User-friendly system for fast, reliable data acquisition, easily processed with WellCAD spectral software and Medusa Calibration proton recoil detector.
- Compatible with Uranium Calibration from Grand Junction ([13-100-055]) for specialized applications.

Operating Conditions

W - Water ?
M - Mud ?
D- Dry ?

S - Steel ? P - PVC Borehole ? UC- Uncased ?

*Centralization is not required

Product Dimensions

Physical	Dimensions (L x W x H)	Weight
(instrument only)	0.39 m x 40 mm (diameter) x	6 kg

Technical Specifications

Optimal Operating Temperatures (°C):	0-70°C			
Maximum Operating Pressure (bar):	200 bar or 2900 psi			
Measurement Range:	3 MeV			
Sensor Type:	Na(Ti) crystal, BGO Scintillation Crystal (1" x 4" inches)			
Calibration:	Medusa spectra calibration (conc. radioisotopes in Bq/kg or ppm)			
Spectral Range:	256 Channels			